
shinyMixR: A project-centric R/Shiny

run management tool for nlmixr
Richard Hooijmaijers1,5, Matt Fidler3,5, Rik Schoemaker2,5, Mirjam Trame3,5, Wenping Wang3,5, Justin Wilkins2,5, Yuan

Xiong4,5, Teun Post1,5

1 LAP&P Consultants, The Netherlands, 2 Occams, The Netherlands, 3 Novartis Pharmaceuticals, USA, 4 Certara Strategic Consulting, USA, 5 The nlmixr team

Conclusions

Introduction
The combination of open-source packages nlmixr and RxODE, available on CRAN1,2 and actively
developed on GitHub1,2, provides a non-linear mixed effects system to perform population-type
pharmacokinetic and pharmacodynamic analyses and simulations3 in R4. The ability to perform
population modeling in R provides an opportunity to work via a single unified workflow. The aim
of this current work was to develop a user-friendly tool for nlmixr based on shiny, which would
facilitate a workflow around an nlmixr project. Ultimately, this should allow for:

1) dynamic and interactive model development
2) quick and efficient communication of population PK-PD models
3) rapid demonstration of simulation results (also see RxODE Shiny)
4) reporting of modelling results5.

• The ShinyMixR package provides a means to build a project-centric workflow around nlmixr
from the R command line and from a streamlined Shiny application.

• This project tool was developed to enhance the usability and attractiveness of nlmixr,
facilitating dynamic and interactive use in real-time for rapid model development.

ShinyMixR6 is set up as an open source nlmixr project management tool written completely in R,
and deployed as an R package. The shinyMixR system is built around a project-centric structure
and provides an interface to nlmixr from both the R command line (R, related GUIs and RStudio7)
as well as a user-friendly Shiny dashboard application8. The ‘shinydashboard’ package9 provides a
layer on top of shiny to produce an easy-to-use dashboard which can be used for controlling and
tracking runs with an nlmixr project, and was the basis for setting up the modular interface. Most
of the functions underlying the interface are written such that these can be called independently
from the R command line, and also work in combination with the graphical interface and vice
versa.

References
1 CRAN: https://cran.r-project.org/web/packages/nlmixr/index.html and GitHub:
https://github.com/nlmixrdevelopment/nlmixr
2 CRAN: https://cran.r-project.org/web/packages/RxODE/index.html and GitHub:
https://github.com/nlmixrdevelopment/RxODE
3 Wang W et al. CPT:PSP (2016) 5, 3–10.
4 R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. URL https://www.R-project.org/
5 https://cran.r-project.org/web/packages/R3port/index.html
6 https://github.com/RichardHooijmaijers/shinyMixR
7 RStudio Team (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL
http://www.rstudio.com/
8 http://shiny.rstudio.com/
9 https://cran.r-project.org/web/packages/shinydashboard/shinydashboard.pdf
10 https://github.com/nlmixrdevelopment/xpose.nlmixr

Usage
General
To be able to work with the package a specific folder structure for a project is required. This structure
can be created using the create_proj function and will create a set of folders and files:

Interactive usage
Most important functions for interactive usage trough the command line:

• This structure is used by the package to manage models
and (graphical) results, and maintained in a project object.

• The structure is monitored by the package to identify
changes in order to provide up-to-date information.

• The structure should be created once at the start of a
project.

• The function will include sample files to create a starting
point for a project.

• The package can handle files created/deleted outside the
package if naming conventions are followed.

create_proj() Create a folder structure for a shinyMixR project

run_nmx() Run a nlmixr model, possibly in a separate R session to overcome “freezing” of current
session

overview() Create overview of all models in a project

tree_overview() Create a collapsible tree overview for visualizing relationship between models

par_table() Create dense parameter table for one or multiple models

gof_plot() Create a combination of most important goodness of fit plots

fit_plot() Create individual fit plots

get_proj() Get project information with available models and high level results

Interface usage
The interface can be started from the projects root folder using run_shinymixr()

The app can be opened in an Rstudio window or web browser. The start window displays a
dashboard with in the main window a (tree) overview of the models in the project structure.
The interface can be started at all times – even if the project was initially started in an interactive
way; and vice versa.

• Customize, create tree and
export the model overview.

• Edit models using syntax
highlighting, customize editor,
use template models, duplicate
and save models.

• Run models in external R
session, run multiple models
side-by-side, keep track of
progress.

• Combine separate results in
one report, use LaTeX or HTML
to make beautiful and easy to
navigate reports.

• Create most important plots
using xpose.nlmixr10 or ggplot
package and save results with
R3port package.

• Quickly see and compare
parameter estimates, save
results that can directly be
used in LaTeX or powerpoint.

• Create custom R scripts to
perform project specific
analyses, directly apply scripts
on multiple model runs.

https://cran.r-project.org/web/packages/R3port/index.html

